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Indentation toughness of ceramics:

A modified approach
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The indentation toughness equation proposed by Anstis et al. was re-examined with a
particular emphasis on the definition of the hardness parameter used. It was shown that,
because of the existence of the well-known indentation size effect (ISE), the apparent
hardness defined as the ratio of the applied load to the projected area of the resultant
indentation usually varies with the applied load and seems not to be suitable for use in
indentation toughness determination. A new equation for determining indentation
toughness, in which a load-independent hardness number was incorporated, was
proposed. C© 2002 Kluwer Academic Publishers

1. Introduction
Surface cracks generated by Vickers indentation are
now used extensively as model surface flaws in frac-
ture research of brittle materials such as ceramics and
glasses [1–4]. Plastic deformed zone at the center of
these cracks exerts a residual crack-opening force. Such
a residual stress plays an important role in the deter-
mination of the fracture toughness of brittle ceramics
with indentation method. Various models for indenta-
tion residual stress have been proposed and are well
summarized by Cook and Pharr [3]. Among these ex-
isting models, the Lawn-Evans-Marshall (LEM) model
[5] may be the most widely cited one. The essences of
the LEM model are that the well-developed indentation
cracks in ceramics are half-penny in shape and the resid-
ual stress due to indentation can be regarded as being
concentrated at a point located at the crack center at the
elastic/plastic interface, acting as crack mouth opening
point-force. Furthermore, it is assumed that the volume
of the indentation plastic zone can be equated to that of
an internally pressurized spherical cavity, allowing the
use of Hill’s solution to the expanding spherical cavity
problems. On the basis of these assumptions, the radius
of the cracks, c, is predicted to bear a characteristic re-
lation to the indentation load, P

c = k P3/2 (1)

where k is an empirically derived constant.
Equation 1, in effect, reflects an equilibrium rela-

tion between the radius of the half-penny crack and a
residual crack-opening point force due to the indenta-
tion plastic zone. Based on Equation 1, Anstis et al.
[6] proposed the following relationship for estimating
or measuring fracture toughness KC from indentation
crack-length data
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KC = δ

(
E

H

)1/2 P

c3/2
(2)

where E is Young’s modulus, H is hardness and δ is a
constant dependent only on the geometry of the inden-
ter. For the standard Vickers diamond pyramid indenter,
Anstis et al. [6] established a value, δ = 0.016 ± 0.004,
by calibrating indentation parameters with fracture
toughness measured by conventional fracture mechan-
ics techniques.

Equation 2 has now been widely used for the eval-
uation of material toughness by indentation. However,
the discrepancy between the indentation toughness de-
termined with Equation 2 and its fracture toughness
measured by other conventional methods has been fre-
quently reported [2, 4]. The origin of this discrepancy
was attributed to a variety of phenomena, including
(i) the dependence of the crack geometry on the applied
indentation load and the properties of the test material
[7, 8] and (ii) the effect of some non-ideal indentation
deformation/fracture behavior such as lateral cracking
[9], subcritical growth of the indentation cracks [10],
or phase-transformation due to indentation [11, 12].

In fact, another important factor that may affect the
accuracy of indentation toughness determination seems
to be related to the definition of hardness used in
Equation 2. In the analysis of Anstis et al. [6], hard-
ness was defined as the ratio of the applied indentation
load to the projected area of the resultant indentation
impression, i.e.,

H = P

2a2
(3)

where a is the half-length of the diagonal of the in-
dentation impression. However, it has been generally
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reported [13, 14] that the hardness based on such a def-
inition, namely apparent hardness, is not a constant
but dependent on the applied indentation load. Such a
phenomenon has long been recognized as the inden-
tation size effect (ISE). Clearly, the existence of the
ISE makes it insufficient to quote a single hardness
number when hardness is used in material characteri-
zation. Therefore, one can expect that uncertainties in
the indentation toughness determined with Equation 2
may result from the use of a load-dependent hardness
number.

Based on the above consideration, the effect of the
apparent hardness on the indentation toughness deter-
mination with Equation 2 was examined in this paper.
A modified indentation toughness equation was then
proposed by incorporating a load-independent hardness
number into Equation 2. The validity of this modified
equation was also verified by analyzing previously pub-
lished experimental data.

2. Analysis
A direct evidence for the effect of the load dependence
of the apparent hardness on indentation toughness de-
termination with Equation 2 may be provided by an-
alyzing the variation of the experimentally measured
indentation parameter P/c3/2 with the applied inden-
tation load. To verify the applicability of Equation 2
to the determination of indentation toughness, an ex-
tensive study was conducted by Anstis et al. [6]. In
this study, a number of so-called “reference” materials,
including glasses, a glass-ceramic, and polycrystalline
ceramics, were indented with a Vickers indenter to de-
termine the crack size, c, as a function of applied inden-
tation load, P . It was suggested from the resultant plots
of P/c3/2 versus P that P/c3/2 was independent of P for
each material within experimental scatter. After Anstis
et al., the existence of a load-independent P/c3/2-
value was be widely adopted as an empirical crite-
rion for judging whether a half-penny crack configura-
tion is well-developed during indentation and whether
Equation 2 may be suitable for calculating toughness
from the indentation crack length [15–18]. However, it
should be pointed out that treating P/c3/2 as a constant
may be questioned. According to Equation 2, the appar-
ent hardness H decreases with increasing P and both
KC and E are constants for a given material. Thus it may
be expected that the experimentally determined P/c3/2

would decrease with increasing P . Fig. 1 gives the plots
of the experimentally determined P/c3/2 over the work-
ing range of indentation load P , for soda-lime glass [18]
and a fine-grained alumina (grain size: 1.2 µm) [19].
A decreasing tendency in P/c3/2 with the increasing
indentation load P is evident for each material, giving
a solid support for the above analysis. In fact, if the
experimental results of Anstis et al. [6], which were
given in Fig. 4 of Ref. [6], are closely examined, a de-
creasing tendency in the measured P/c3/2 with increas-
ing P can also be detected, especially for the results on
Si3N4 (NC350), Al2O3 (AD999), glass (LA) and single
crystal Si.

Another evidence for the effect of apparent hardness
on indentation toughness determination with Equa-

Figure 1 Plots of P/c3/2 versus P over the working range of applied
indentation load for soda-lime glass (�) [18] and a fine-grained alumina
(�) [19].

tion 2 may be obtained by comparing the reported val-
ues of the constant δ appeared in Equation 2. As men-
tioned above, the constant δ appeared in Equation 2 has
an empirical value of 0.016, which was obtained by ex-
perimental calibration with known fracture toughness
values on a variety of ceramics [6]. On the other hand, a
more detailed theoretical analysis by Shetty et al. [20]
gave δ = 0.023. It is well-known that the apparent hard-
ness decreases usually with increasing indentation load
and tends to a constant, sometimes referred to as the
load-independent hardness or true hardness, at a rel-
atively high load level [13, 14]. Because the apparent
hardness, which is used in the experimental calibration
of δ-value by Anstis et al. [6], is usually higher than the
true hardness, which is used for the theoretical anal-
ysis by Shetty [20], it can be understood easily from
Equation 2 that the experimentally calibrated δ-value
is smaller than the theoretical value.

Clearly, to eliminate the effect of the apparent hard-
ness on indentation toughness determination, a load-
independent hardness number should be incorporated
into the indentation fracture mechanics equation. This
can done by re-examining the LEM model which pro-
vides the theoretical basis for Equation 2. Following
the analysis of Lawn et al. [5], we start with the expres-
sion for the stress-intensity factor, KI, for a half-penny
surface crack centrally loaded with a point force, F ,

KI = �F

πc3/2
(4)

where c is crack half-length and � is a free-surface
correction factor.

In the indentation problem, F is the residual force
derived from the indentation plastic zone. Assuming
the indentation plastic zone is hemi-spherical and has
a radius of ρ, F is given by [20]

F =
∫ π/2

0
πρ2σr sin θ cos θ dθ = πρ2σr

2
(5)

where σr is the residual pressure which develops at the
elastic-plastic interface as a direct result of elastic ac-
commodation of the indentation impression volume in
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the hemi-spherical plastic zone. Denoting �V and V
are the volumes of the indentation impression and the
plastic zone, σr can be related to the elastic modulus, E ,
and the Poisson’s ratio, υ, with the following equation

σr = E

3(1 − 2υ)

(
�V

V

)
(6)

Note that �V ∝ a3 and V ∝ ρ3. If we reasonably as-
sume that the effect of Poisson’s ratio can be neglected
[5, 20], substituting Equations 5 and 6 into Equation 4
gives

KI ∝ E

ρ

(
a3

c3/2

)
(7)

Since the parameters E, a and c can be measured easily
with the conventional techniques, the key problem for
using Equation 7 to estimate KI is then the determina-
tion of the size of the plastic zone, ρ. Therefore, the
relation between this radius and the elastic properties
(Young’s modulus, E , and Poisson’s ratio, υ) and plas-
tic properties (hardness, H0) of the indented material
has been a subject of many theoretical or experimental
studies [5, 20, 21]. Here we use the empirical relation
suggested by Lawn et al. [5] that approximates the more
rigorous elastic-plastic solution proposed by Chiang
et al. [21]:

ρ

a
∝

(
E

H0

)1/2

(8)

Inserting Equation 8 into Equation 7 yields

KI = α(E H0)0.5
(

a2

c3/2

)
(9)

where α is a constant independent of the test material.
Equation 9 predicts that it is the quantity a2/c3/2,

rather than P/c3/2, that would keep constant. To ver-
ify this prediction, the experimental data on soda-lime
glass [18] and a fine-grained alumina [19] are now plot-
ted in Fig. 2, where the quantity a2/c3/2 is shown as a
function of the applied indentation load, P . Clearly, a
nearly constant a2/c3/2 is observed for each material.
Furthermore, the coefficient of variation of a2/c3/2 was
calculated to be 0.030 for soda-lime glass and 0.023
for alumina. Compared with the coefficient of varia-
tion of P/c3/2, 0.097 for soda-lime glass and 0.085 for

Figure 2 Plots of a2/c3/2 over the working range of applied indentation
load P for soda-lime glass (�) [18] and a fine-grained alumina (�) [19].

alumina, the relatively smaller value of the coefficient
of variation of a2/c3/2 seems to demonstrate that it is
more reasonable to treat a2/c3/2, rather than P/c3/2, as
a constant.

The preceding analysis is similar to that conducted
by Lawn et al. [5] for proposing their LEM model.
In fact, substitution of the applied indentation load P
for the indentation dimension a with Equation 3 and as-
suming H ≈ H0 would yield Equation 2, the basic equa-
tion which is now widely used in indentation toughness
determination. However, it should be pointed out that
such a substitution may be questioned. Equation 8 was
derived directly from Hill’s solution to the expanding
spherical cavity problem [5, 21]. According to Hill’s
analysis [22], the hardness parameter, H0, used in Equa-
tion 8 should be a material constant, which is a measure
of the material resistance to plastic flow, whereas the
apparent hardness, H , varies due to the existence of the
ISE, as mentioned above. Thus one can expect that it is
more appropriate to calculate the indentation toughness
with Equation 9, rather than Equation 2.

Determining indentation toughness with Equation 9
requires prior knowledge of the load-independent hard-
ness, H0, of the test material. Unfortunately, up to now,
a reliable method to determine the load-independent
hardness has not been established yet, although exten-
sive studies [23–26] have been conducted on this sub-
ject. Therefore, an empirical method to determine the
load-independent hardness number was proposed here.
Many investigators [13, 14, 27, 28] have suggested that,
in the experimentally determined hardness–load curve
for ceramics, a discrete transition point may exist where
apparent hardness changes from being load dependent
to load independent. Based on an energy balance anal-
ysis for the indentation process, Quinn and Quinn [14]
proposed a new index of brittle for ceramics by com-
bining elastic modulus and fracture toughness with the
load-independent hardness measured at sufficient high
indentation load level. The validity of this new index
of brittleness was also discussed in detail by Quinn and
Quinn [14]. Thus, there is reason to believe that the
load-independent hardness, denoted hereafter as HC,
used by Quinn and Quinn is a material intrinsic param-
eter and may be used as an approximate estimation of
the hardness H0 appeared in Equation 9. In the follow-
ing section, the applicability of this hardness number in
indentation toughness determination with Equation 9
will be examined by analyzing the experimental data
published previously by different authors.

3. Determination of α
The preceding section proposed a modified approach
to determine the fracture toughness for brittle materi-
als using indentation method. A key problem in using
this modified approach is the determination of the pa-
rameter α appeared in Equation 9. Similar to the work
of Anstis et al. [6], here we try to obtain an empiri-
cal value for α by experimental calibration with known
fracture toughness values on a series of “reference” ma-
terials. The “reference” materials chosen for the present
study are listed in Table I, alone with some information
relative to indentation toughness determination.
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T ABL E I “Reference” materials chosen for the present study

KIC

Materiala E (GPa) HC
b(GPa) (MPa · m0.5)c

Soda-lime glass [18] 70 4.5 0.75
Al2O3 (hot-pressed,

grain size 1.2 µm) [19] 390 19.7 3.66
Al2O3 (normal sintered) [29] 272 9.3 3.8
SiC (normal sintered) [29] 410 22.2 2.2
Si3N4 (normal sintered) [29] 314 14.1 6.1
TZP (yttria stabilized) [30] 210 12.5 5.5
Silceram (SCF5) [31] 120 6.8 2.02
WC-5vol% Co cermet [32] 640 19.1 8.8

aThe source references for E, HC, and KIC data are shown in parentheses.
b HC was quoted approximately as the apparent hardness measured at
the highest load level examined in the source references. As can be
found in the source reference, such a treatment may yield a nearly load-
independent hardness value defined in Section 2.
cThe quoted KIC was used in the source references as a “standard”
toughness value for each material except those used in Ref. [29], which
were tested with a single edge precracked beam (SEPB) method.

Careful indentation experiments on these “reference”
materials have been conducted by other authors. There-
fore, the following analysis was conducted directly
using the indentation data reported by other authors.
These data were analyzed and the relative results are
summarized in Table II. Note that it was generally sug-
gested that a indentation crack with a c/a-ratio smaller
than 2.5 may not be considered to be half-penny shaped
[7, 15, 16] and may deviate from the center-point load-
ing approximation, the basis for using Equation 4 as
the start equation for calculating KI at the tip of the
indentation-induced crack. The results listed in Table II
were obtained only based on analyzing the original
data associated with indentation cracks with a c/a-ratio
larger than 2.5. For example, Ritter et al. tested soda-
lime glass in the indentation load from 2.45 to 98.1 N.
However, the indentation cracks produced at 2.45 N
have an average c/a-ratio of only 2.17. Thus this data
was excluded in our analysis and only the data mea-
sured in the load range from 4.9 to 98.1 N were used.
Similar treatments were also conducted for some of the
other materials listed in Table II.

By assuming H0 = HC, the value of the quantity
(EHC)0.5(a2/c3/2) was calculated for each material us-
ing the data listed in Tables I and II. The calculated
results are plotted in Fig. 3 as a function of KIC. Fig. 3
confirms that there is a strong correlation for all inves-

T ABL E I I Summary of the indentation data reported previously

Range of P P/c3/2 a2/c3/2

Materiala examined (N) c/a (MPa · m0.5) (×1000 m0.5)

Soda-lime glass [18] 4.9 ∼ 98.1 >2.5 12.37 1.147
Al2O3 (hot-pressed grain size 1.2 µm) [19] 49.1 ∼ 245.3 >3.3 39.73 0.963
Al2O3 (normal sintered) [29] 98 ∼ 196 >2.7 36.64 1.810
SiC (normal sintered) [29] 49 ∼ 196 >3.76 35.83 0.744
Si3N4 (normal sintered) [29] 196 2.545 67.07 2.212
TZP (yttria stabilized) [30] 196 ∼ 294 >2.57 60.10 2.218
Silceram (SCF5) [31] 50 ∼ 149 >3.37 19.23 1.280
WC-5vol% Co cermet [32] 294 ∼ 490 >2.83 76.23 1.837

aThe source references for the quoted indentation data are shown in parentheses.

Figure 3 Plot of KIC determined with conventional methods versus the
quantity (EHC)0.5(a2/c3/2).

tigated materials over a broad range of fracture tough-
ness and the quantity (EHC)0.5(a2/c3/2). The correla-
tion supports the analysis conducted in the preceding
section. Statistical analysis of the data shown in Fig. 3
according to Equation 9 yielded

α = 0.043 ± 0.007 (10)

As mentioned above, Shetty et al. [20] proposed a
δ-value of 0.023 from a detailed theoretical analysis for
deducing Equation 2. Noting the similarity between the
present analysis for deducing Equation 9 and that con-
ducted by Shetty et al. [20] for deducing Equation 2,
one can expect that the parameter α in Equation 9 would
has a theoretical value of 0.046 (i.e., 2δ). Our calibrated
α-value, 0.043, is in good agreement with this theoret-
ical result, implying that it seems to be reliable to use
HC, which was defined by Quinn and Quinn [14], ap-
proximately as the true hardness, H0, in KC calculation.

4. Discussion
The present modified approach to determine indenta-
tion toughness differs from the original method pro-
posed by Anstis et al. [6] only in the definition of the
hardness parameter used for calculation. However, it
should be pointed out that such a simple modification
may be important for practical applications.

In the original paper [6] where Equation 2 was pro-
posed, Anstis et al. did not pay any attention to the
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load-dependence of the apparent hardness, H , and sim-
ply used a constant hardness value in their experimental
calibration for δ-value. This fact results in a confusion
in hardness measurements in the subsequent studies
concerning indentation toughness determination with
Equation 2. For example, the hardness value used by
Li et al. [7] to calculate the indentation toughness for
SiC was measured with the indentations associated with
microcracking, while Shi and James [33] measured the
hardness at low loads where indentation-induced mi-
crocracking did not occur for their study on indenta-
tion toughness determination of glasses. Undoubtedly,
such a situation would make the reported data incom-
parable since using different hardness values measured
at different load levels would yield different values
for indentation toughness. The modified approach pre-
sented in this study introduced a comparable hardness
index, HC, into indentation toughness calculation and
overcome the this drawback associated with hardness
measurement.

Note that HC quoted in our modified approach is
not a real true hardness. As mentioned in Section 2,
HC is also an apparent hardness defined with Equa-
tion 3. What we had done was only to attribute a limita-
tion to its measurement; that is, it should be measured
at relatively high load level to make it nearly load-
independent. Thus, one can expect that, when measur-
ing indentation toughness at relatively high load level,
the modified approach would yield results comparable
to those obtained with the original one, i.e., Equation 2.
However, it is clearly appropriate to use the modified
approach to determine indentation toughness in low-
load regime where the ISE in the apparent hardness is
usually significant [13, 14].
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